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ABSTRACT

The Air Quality Strategy and part 1V of The Environment Act, within the United Kingdom,
highlights the need for local authorities to undertake air quality assessments. However, many
of the dispersion modelled studies undertaken for this purpose do not accurately predict short
term average concentrations (i.e. one day or less) and have limited validation data for short-
term averages. The inability of dispersion models to predict short term averages is generic of
the typically used Gaussian dispersion model. The work presented in this paper has
concentrated on investigating, developing, designing and testing an innovative method of
linking dispersion modelled and monitored results using artificial neural networks. The
objectives of the study were to establish the relationships between short term (1 hour) air
pollution monitored data, air pollution data produced through dispersion modelling and
meteorological data and to use the findings to create and validate a new intelligent ‘control’
model to correct errors in dispersion modelling results, such as those that occur during low
wind speeds, when many Gaussian models are known to under predict. The study shows that
artificial neural networks can be used to simulate the complex relationships between
dispersion modelled and monitored data. The adopted method is amenable for use with many
dispersion models and geographical areas. It is most suited to occasions when in-depth air
pollution analysis is necessary, for short term averages, as now statutorily required in the UK
and many other countries.

BACKGROUND

The European Union’s (EU) Daughter Directives set limits for a variety of air pollutants,
including some short term limits for 1 hour averages. Similarly, the World Health
Organisation (WHO) has set limit values with averaging periods as low as 15 minutes. The
United Kingdom (UK) as part of their obligation to achieve the EU air pollution limits have
set similar objectives for air pollution, however, the UK has also incorporated some of the
tighter WHO guidelines, including 15 minute averages. As part of the UK government’s aim
of achieving the UK objectives local authorities have had to undertake, under The Air Quality
Strategy [1] and part IV of The Environment Act [2], air quality review and assessments.
About 124 out of around 450 [3] local authorities in the UK have recently completed a review
and assessment of local air quality which has culminated in the declaration of Air Quality
Management Areas (AQMAS) in many areas, where air pollution objectives are likely to be
exceeded. Some of these objective exceedance are related to short term objectives. Before an
AQMA is declared the area of exceedance needs to be identified. With current modelling
limitations for short term objectives this task, especially for short term objectives, is difficult
and prone to errors.

In some cases sophisticated monitoring can be carried out to accurately measure short term air
pollution concentrations, however, due to the expense of collecting short-term monitored data
modelling of air pollution, typically involving gaussian dispersion models, has had to be
undertaken to fill in the ‘gaps’. Any modelling will always have a degree of error associated
with it as it is a limited simulation of the real world and it is impossible to include all relevant



variables that can affect the end results; it is an approximation that uses the most significant
variables to provide an estimate. Typical ways of estimating air pollution involve the use of
dispersion models, monitored data and emission inventories, as well as standard statistical
techniques. However, the use of dispersion models for predicting air pollution is prone to
uncertainties: emission inventory data is normally based on estimates for a source of pollution
and rarely based on monitored data; dispersion models are based on a Gaussian probability
function of pollution dispersion from a source to a ‘receptor’, using emission inventory data
and meteorological data as an input; dispersion models estimate pollution at a point by
summing the contribution from each source; there is no calculation made for accumulation
over time e.g. from the last calculated period); and dispersion model inputs are not exact. The
performance of the current methods could be substantially improved, if the conditions under
which these methods did not reasonably estimate were known, and steps were taken to
‘control” this under performance. However, to achieve this ‘control’ would require
substantial, time-consuming, analysis of large amounts of data.

The basic relationships between monitored and modelled air pollution is inter-variable
dependant and non-linear. Neural networks are useful in areas where there are many variables,
which are inter-dependent and have non-linear relationships, they are a quick and efficient
means of creating prediction models, and time can be spent analysing results rather than
creating or designing the initial models. Therefore, it was considered appropriate to utilise
neural networks for the prediction of air pollution. Previous studies [4] found that the
variables most applicable to the relationship between dispersion modelled data and monitored
data were wind speed, temperature, the past hour’s monitored pollution level and the current
hour’s modelled pollution level. These variables have been used with the neural networks to
increase the accuracy of the results from dispersion modelling.

Artificial neural networks are based on biological neural behaviour [5] and are typically used
in pattern recognition and can be used for equation estimation [5, 6], where other techniques
may prove unreliable or too time consuming. Neurons are used as connection points between
the input and outputs. The greater the number of neurons the greater the accuracy and power
of the network [5]. Each neuron is based on an equation which tends to be linear, logarithmic
(natural) or tangential, though in reality anything could be used providing there is a solution.
These equations have weights and bias (i.e. a multiple and an addition element) that can be
changed depending on the training or learning of each neuron (memory). A general approach
to neural networks, and brief review of their use in atmospheric/pollution modelling, is
presented by Peace [4] and additionally by Gardner and Dorling [7], both these publications
discuss how to implement a neural network and a have detailed discussion on the
multiperceptron, which is typically used for air pollution.

Neural networks have previously been used in relation to air pollution modelling by typically
replacing the dispersion model, while utilising monitored data for a specific pollutant only [7,
8, 9, 10, 11]. However, this requires the provision of many sites where the required monitored
data is available, which is not the case for most local authorities. Many urban local
authorities, within the UK, possess one site with short-term monitoring equipment, which
could be used with the suggested methodology. In this study neural networks have been used
in a unique way to estimate the relationships between monitored air pollution, modelled air
pollution and monitored meteorological data, to produce more accurate results.

METHODOLOGY



The 1SC3 dispersion model [12] has been used to produce the dispersion modelled output in
conjunction with the local emissions inventory [13] and local meteorological data. Data was
also collected from the local continuous air quality monitoring station data (AURN), a high
accuracy chemiluminescent automatic monitoring station belonging to NETCEN’s calibration
club. These monitoring stations are vigorously validated and calibrated on a regular basis [14]
and provide typically hourly averaged concentrations.

The dispersion modelled data and other monitored data, both air pollution and meteorological,
were used in the training and simulation of the neural networks. Training and simulation were
only carried out for one receptor point due to limited short term monitored data. However,
from the concept point of view and the fact that many urban local authorities do not have
numerous monitoring stations, the use of one monitoring station for background training data
was deemed adequate. A feed-forward neural network, using three layers, is typically used for
air pollution, as other work has shown this to be the optimum compromise between the time
to train and the ability of the neural network to simulate data [7, 10, 15, 16, 17]. Hence, in
this study the neural networks’ structure were based on feed-forward networks with three
layers (excluding the input layer). Trial runs found that the optimum neural network consisted
of a tangential, logarithmic and linear layers (activation functions in each layer), with 12, 6
and 1 neurons respectively. Different combinations of activation functions and different
numbers of neurons, for each layer, were tested. The last layer has one neuron as there is only
one output from the neural network (pollutant concentration). Training was carried out by
creating various sets of input and output data, with different variables and varying amounts of
data (i.e. number of hours), summaries are presented in Table 1 for the two artificial neural
networks (ANN) reported here. Data ranges were normalised so that the values of each
variable would be within similar ranges, this allows the neural network to calculate the
weights and biases without favouring one particular variable. The largest data set (in terms of
number of hours) was found to train the neural networks the best, presumably because there
was a significant number of different data ‘scenarios’ represented within this data. As the
results for the training site are not necessarily representative of the whole area, the trained
neural networks were then validated at other sites where they had not been trained.

TABLE 1: INPUT DATA INCLUDED

INPUT ANNa ANNDb
HOUR Yes Yes
WIND SPEED .1 (*10) Yes Yes
TEMPERATURE .1y (-273) Yes Yes
DISPERSION MODEL Yes Yes
INCREASE IN WIND SPEED (+15) Yes No
4am CONCENTRATION Yes Yes

As carbon monoxide is cheaper to measure, due to its relative concentration (ppm rather than
ppb) and associated complexity of the equipment, the validation was carried out on carbon
monoxide.

Three additional sites, to the AURN station site (Site 4), were chosen at background locations.
Each site was monitored for at least 5 working days (i.e. not a weekend or holiday) and the
collected data used to validate the chosen neural networks. As part of aim of this study was to
predict short term concentrations to a higher level of accuracy, rather than long term average
values, a small sample (i.e. 5 working days) was chosen to indicate if the neural networks
produce better short term averages, at sites other than the training site. The AURN site (Site
4) and Site 3 are both classed as background sites, however, both are heavily influenced by
local traffic due to their locations. Sites 1 and 2 are also background sites but are further away



from the main arterial routes within the study area. All sites are also influenced by localised
industrial activity. Site 2 is close to the edge of the study area. The data sets for the neural
networks were created as described previously, except that the neural networks were not
trained further and additional receptor points were added to the dispersion model in order to
generate the relevant input data to the neural networks.

RESULTS

Results are presented in Table 2. The iteration value refers to the number of iterations
(training cycles) that were used to initially train the neural network.

Table 7.2 depicts the correlation between the monitored data and the neural network and
dispersion modelled results. In general the neural networks have higher correlation than the
dispersion modelled results. However, the neural networks at Site 2, with the exception of
ANNa at 25 iterations, have a lower correlation than the dispersion modelled data. This lower
correlation could possibly be due to Site 2 being close to the local authority border, where
outside emission sources (that where not modelled) may have impacted. The better
performing neural networks, in terms of correlation, generally have a higher correlation for a
lower number of iterations, indicating that the neural networks are becoming too well trained
at higher iterations and loosing their ability to generalise.

The percentage error decrease has been calculated using the following equation:

Error decrease = ((Model prediction — Monitored) - (ANN prediction — Monitored)) x 100
Monitored

Where:
Error decrease = Percentage error decrease;
Model prediction = Dispersion modelled result (mean);
Monitored = Monitored data (mean); and
ANN prediction = Artificial neural network prediction (mean).

The percentage error decrease is in general higher, for the same number of iterations, for
ANNa than for ANNb. However, for ANNDb the percentage error decrease is higher for a
lower number of iterations and for ANNa higher for a higher number of iterations. The
percentage error decrease is highest at all sites, except Site 4, for ANNb. Therefore, it appears
that ANND is over generalising at higher iterations, but in general is better at predicting.

TABLE 7.2: RESULTS

Site|lteration| Correlation | Correlation | Correlation Percentage Percentage
for ANNa | for ANNb | for dispersion |error decrease |error decrease

model for ANNa for ANNb

1 |25 0.56 0.3 0.33 13 26

1 |50 0.52 0.39 0.33 18 22

1 |75 0.54 0.46 0.33 19 17

1 ]100 0.54 0.46 0.33 19 17

1 |125 0.54 0.47 0.33 19 17

1 ]150 0.54 0.48 0.33 19 16

1 |175 0.54 0.49 0.33 19 15

1 200 0.54 0.49 0.33 19 15




2 |25 0.09 0.01 0.08 19 36
2 |50 0.02 -0.06 0.08 28 28
2 |75 -0.05 -0.07 0.08 34 21
2 (100 -0.05 -0.07 0.08 35 2
2 125 -0.05 -0.07 0.08 35 19
2 [150 -0.05 -0.07 0.08 34 18
2 |175 -0.06 -0.08 0.08 35 16
2 1200 -0.06 -0.08 0.08 35 16
3 |25 0.1 0.12 0.06 28 54
3 |50 0.04 0.11 0.06 48 45
3 |75 0.01 0.09 0.06 63 35
3 [100 0.01 0.08 0.06 64 35
3 |125 0.01 0.08 0.06 64 33
3 [150 0.01 0.08 0.06 64 3
3 [175 0.01 0.08 0.06 65 28
3 |200 0.01 0.08 0.06 66 27
4 125 0.42 0.59 0.01 28 56
4 |50 0.4 0.52 0.01 44 42
4 |75 0.33 0.43 0.01 ol 33
4 1100 0.33 0.43 0.01 52 33
4 125 0.33 0.41 0.01 52 31
4 [150 0.33 0.4 0.01 51 28
4 |175 0.33 0.38 0.01 52 26
4 1200 0.32 0.37 0.01 52 25
CONCLUSION

To summarise, the neural networks appear to have higher correlations and the lowest
percentage error. These two neural networks deliver an improvement in correlation and a
decrease in percentage error, in relation to the error associated with dispersion model results,
as demonstrated in Table 2. In Table 2 neural network b (ANNDb) has an average error
decrease of 27.9% and neural network a (ANNa) an average error decrease of 38.9%
compared to the dispersion modelled results. However, ANND is better at predicting if the
neural networks are only trained for a few iterations.

This study demonstrates that the application of the neural networks trained on as much data as
possible, out perform the dispersion model in terms of their ability to reflect hourly
fluctuations and reduced error, even at sites that the neural networks have not been trained at.
However, the neural networks have been trained and tested only at background locations.
Further research on the utilisation of a more advanced dispersion model would possibly
increase the accuracy of the neural network results and consideration of other non-background
sites.

The results are promising and the methodology of combining dispersion modelled and
monitored data, could be utilised in the future within local authorities to enhance dispersion
model results, or even extended to link directly with emission inventories, removing the
dispersion modelling process altogether. The discussed methodology could also be utilised
within current dispersion models to increase the accuracy.

The methodology could also be used in conjunction with less sophisticated dispersion models,
such as PAL (US EPA Point Line and Areas source dispersion model), to increase their




accuracy to that approaching a more advanced and expensive dispersion model and thus
decrease the cost. Once the neural network has been set-up it is fairly easy to re-train and
could be trained on local data on a regular basis to provide a more up to date picture of
pollution and the resulting increased accuracy. The resulting artificial neural networks could
also be used within Air Quality Management Areas, linking to real-time data (the 4am value)
to provide a forecast for the days pollution and hence feed into ‘Action Plans’ to avoid
pollution scenarios.
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