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ABSTRACT – The so-called “inductive learning algorithms” in the field of artificial intelligence can be well 
applied to the solution of automated and adaptable regression problems and, hence, to the assessment of time 
series, as well. Forecasts were made by using artificial neural networks, as mostly used method recently, as well 
as the related support vector regression techniques. These methods are able to perform proper non-linear 
function fitting, which essential in case of practical non-linear assessment problems. If we combine the methods 
mentioned above, we can get more precise decisions for the future data. In either case, the efficiency of learning 
depends on a good choice of the learning algorithms' parameters. For this reason, parameters are selected by 
simulated annealing. The aim of this paper is to compare the above mentioned prediction techniques in several 
hours forecast of NO concentrations at a busy cross-road in Szeged (Hungary). For this object, meteorological 
parameters predicted with given error on their actual values were used. 
 
1. INTRODUCTION 
 
Considering the special meteorological and geographical conditions of Szeged, the dispersion 
of air pollutants – especially during permanent anticyclone weather conditions in the summer 
and winter seasons – is extremely slow. A reliable forecast of concentrations of the air 
pollutants is highly important. Methods of classical statistics as well as methods of neural 
networks were already used to give short term forecast of various gases and particulate matter. 
Gardner and Dorling (1988) [1] give an excellent account on the applications of neural 
network methods for forecasting in atmospheric sciences. Jorquera et al. (1998) [2] compare 
a linear model and a fuzzy model as prediction tools of daily maximum ozone concentrations. 
Perez et al (2000) [3] presents an application of neural networks for a few hours prediction of 
PM2.5 in the atmosphere of Santiago city (Chile). Ziomas et al (1995) [4] analyses the 
possibility of forecasting maximum ozone concentrations in Athens city. He applied 
discriminant analysis to forecast possible increase and decline of NO2 levels. He considered 
the following parameters: previous daily maximum ozone concentration; forecasted 
temperature; wind velocity and direction; an index of the given day's short term emission 
change; an index of the effect of the precipitation on the given day. In average, 80 % of the 
forecasts were successful. In this paper, different forecasting methods, the multi layer 
perceptron and the support vector regression, are compared. Furthermore, they are used to 
forecast hourly averages of NO concentrations. The parameters that our estimations are based 
on  are NO concentrations from the previous day, wind velocity, temperature and humidity. 

 
2. INDUCTIVE LEARNING OF ATMOSPHERIC PARAMETERS 
 
We apply two different inductive learning techniques to give estimations of future 
atmospheric parameters such as NO concentrations. Here we briefly recall the  Multi Layer 
Perceptron model and the ν-SVR algorithm that we used. 



Inductive learning of a concept means recognizing a hypothesis regarding this concept after 
presenting the training instances to the learner. The simplest learning case is that, where one 
part of the training instances is true (positive) and another part is false (negative). A subset of 
the instances can be regarded as a function, namely as the characteristic function of the subset. 
The domain of this function consists of the instances, while the values are either true or false 
(0 or 1) according to the instances belonging to the subset or not. During the training process, 
the instances are generally represented in the following format: 

x1, x2, ... , xn,    y 
   instance class 

where xi is the i-th attribute of the instance and y is the class of the instance (true or false). A 
training instance and its class is a training example. In order to find the inductive hypothesis, 
a function of y = h(x1, x2, … , xn) based on the training instances have to be approximated. 
The number of the classes can be extended to more than two; thus, the problem can be 
generalized to the classification into more than two discrete classes or to the learning of 
functions with not discrete range. Goodness of the  hypothesis h can be determined by 
applying it on the not presented instances (which were not in the training set).  

The estimate of the atmospheric parameter corresponds to an inductive learning model. 
Past data are the instances, and the forecast of the data will be determined by an inductive 
hypothesis. The accuracy of the learning depends on the number and on the accuracy of the 
training data (data can come from real process by measurement), while the quality of the 
learning (the finding of the inductive hypothesis) depends on the chosen learning algorithm. 

2.1 Multi Layer Perceptron (MLP) 

While the one-layered MLP is capable of approximating continuous functions (Hornik et al., 
1989) [5], the two-layered MLP is capable of approximating arbitrary finite sets of real 
numbers (Chester, 1990) [6]. Thus we choose the latter an regard the number of neurons in 
each layer as parameters of the learning mechanism. We use the sigmoid activation function 
(1), and both the input and the output layers have linear units. 
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When the l pieces of attributes of the ith learning instance takes the form 1 2( , , , )Ki i ilx x x  then the 
output of the sth Perceptron in the 1st layer is given by (2) and the output result is given in (3). 
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21,ll : number of perceptrons in 1st and 2nd layers. 
 



The well-known backpropagation method  with momentum is used for adjusting the weights 
during the training process

1
. Backpropagated MLP learning depends on the following 

parameters that need to be tuned: number of neurons in the hidden layers, learning rate, 
momentum and number of training epochs. 
 
2.2 Support Vector Regression (SVR) 
 
There are two commonly used Support Vector Machines for regression the ε-SVR algorithm 
and its extension the ν-SVR algorithm (see Schölkopf et al, 1998) [7]. We chose the ν-SVR, 
because it has an advantage in contrast with ε-SVR, being able to automatically adjust the 
width of the ε-tube around the function being approximated. An SVR maps the 

1 2( , , , )i i ilx x x=x K  instances to a usually higher dimension space, called feature space by a 
 : l Lφ →¡ ¡ , L l≥  function. Then it makes a linear fit according to (5) with some precision by 
optimizing the weights 1 2( , , , )Lw w w=w K , biasw . 
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The aim is to find w  and biasw  such that , ( )i biaswφ +w x  approximates iy   best possible with 
respect to the “distance”, the so-called ε-insensitive loss function: 

max(| ( ) | ,0)f y ε− −x . 
This means that we imagine an ε-tube around the regression and  the points of the feature 
space that lie within this tube are still considered acceptable. We also wish to keep | |w  small, 
i.e., the regression flat. The ν-SVR is a modified version of this: Minimise the expression 
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T *( )i i iy φ ε ξ− ≤ +w x , T ( )i i iyφ ε ξ− ≤ +w x  and *, 0i iξ ξ ≥ . 

To obtain better performance some parameters in the algorithm ν-SVR may be tuned:  
regularisation parameters ,C ν  and other parameters of the function φ . 

 
2.3 Discussion of the methods 
 
2.3.1 Over-fitting. 
A general drawback in machine learning is over-fitting. When the precision of the 
approximation of the desired function is increased, the generality, i.e., the applicability of the 
method to data sets largely different from the training set may be destroyed. Thus, in case of 
the instances taken outside of the training set the sum of the errors increases. Generally, these 
phenomena may be observed in the later phases of the training process. Using a larger training 
set or stopping the training process in due time may provide a solution to this problem; 
nonetheless, there are no exact definitions of the correct stopping time.  
 
2.3.2 Setting of parameters. 
Machine learning techniques, as mentioned above, suffer from problems like overfitting. 

                                                 
1 Provided by Weka library (Witten et al., 2000) [8]. 



These problems occur also because of not properly chosen learning parameters, e.g., number 
of neurons in case of neural networks (see Section 2.1). In addition, the prediction tasks can 
require some other parameters, see, e.g., Section 2.2. The precision of the forecast highly 
depends on the rightly chosen parameters. Finding the good parameters is hard because of the 
function which measures their goodness has unknown or bad behaviour from the 
optimisations point of view, it may not be differentiable or can have many local extrema. Our 
model selection is based on a validation process. Historical data is divided into training and 
test sets. The learner uses the training set for making a hypothesis and we validate this on the 
test set by comparing the hypothesis-provided estimation with the desired real values. 
Comparison gives a measurement of the goodness. Based on this measurement the model 
selector can decide acceptance or modification of the parameters and doing again the process 
in hope of the better solution. Our goodness/fitness measurement function f of a p parameter 
vector is the Root Mean Squared Error (RMSE): 
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2.3.3 The Simulated Annealing. 
The simulated annealing (SA) is a heuristic method of locating the extrema of a function (the 
terminology is motivated by physical annealing processes). In our case, we are looking for the 
minimum of the fitness function f as described in Section 2.3.2.  From the initial point we try 
to move randomly in the parameter space with varying step size. The algorithm employs a 
random search that not only accepts changes that decrease objective function f, but also some 
changes that increase it with positive probability. It is an ability to avoid becoming trapped at 
local optima. Since the algorithm requires no assumption on the shape of f, it provides a 
widely applicable tool. Taking small enough decrease in the temperature at each step, we may 
get sufficiently close to or reach the optima. Currently we optimize the learner-specific 
parameters mentioned as tuneable in the Sections 2.1 and 2.2.  
 
3. RESULTS 
 
For each 24 hours of a day a different neural network and support vector machine was 
applied. The aim was to forecast the NO concentrations in a given hour from the previous 
days already known atmospheric data.  We considered three types of estimations. First, we 
predicted NO concentrations purely from NO concentrations (signed 1 in figures). Second, we 
took into account certain external factors, as humidity, wind velocity and temperature in a 
given hour (signed 2 in figures). Finally, we looked whether solely these external factors 
allow reasonable forecast of NO concentrations (signed 3 in figures). We used as 
training(learning) set normalized data of September 1. 2000 – March 12. 2001 (every 
weekday), and the prediction was happened to March 13. 2001 – March 16. 2001 (Tuesday, 
Wednesday, Thursday, Friday).  The figures below depict the error values (RMSE) of the 
different forecasts for four subsequent four days. 
Some abbreviations are ANN (artificial neural network): MLP, LR: linear regression, PERS: 
persistency, HTW: humidity, temperature and wind velocity. And there are some cases 
ordered by different learning set (1,2,3).   



 
RMSE(PERS)= 0.408432   
RMSE(LR 1)= 0.386363 
RMSE(ANN 1)= 0.402882 
RMSE(ANN 1 SA)= 0.384444 
The different methods give 
similar results. The SA does not 
in general improve the results of 
ANN, on the contrary in certain 
cases these result are even worse. 
This is due to the fact that a 
neural network having better 
fitness on the test set may give 

larger errors in the prediction period (this is the over-fitting as described in Section 2.3.1). 
This can be a general drawback of the SA. The persistency means that the concentration in a 
given hour of the previous day is considered as the „predicted” value. As can be seen, the 
neural networks did not achieve much better results than simply the persistency. 
 

RMSE(SVR 1)= 0.962204   
RMSE(SVR 1 SA)= 0.388504 
RMSE(SVR 1 with other parameters)= 
0.336281  (red) 
The first parametrisation of the 
SVR results in significantly 
larger errors, but the trend sin the 
errors is the same. This shows 
that the proper choice of the 
parameters influence the quality 
of the learning to a great extent.  
The use of SA drastically 

reduced the mean error, whereas also a disadvantage of the probabilistic search can be seen. It 
was possible to find manually a slightly better parametrisation than that SA produced. Further 
when we started from the optimal parameters the probabilistic nature of SA made it possible 
that the search process left the optimum. 
 

RMSE(ANN 2)= 0.35185 
RMSE(ANN 2 SA)= 0.29305 
The ANN SA 2 reduces the error 
of the simple ANN 2 in many 
cases (Tuesdays 5-8), but also 
sometimes gives worse results 
(Tuesdays 9-11). In the whole of 
the prediction period the use of 
SA resulted in better performance. 
The ANN 1 and the ANN 2 are 
quite similar, but the RMSE of the 
ANN2 is better, which justifies 

the role of the HTW. The application of  SA with ANN 2 improves the results. 
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RMSE(SVR 2)= 0.33173    RMSE(SVR 2 SA)= 0.3367 
 
The three additional factors do not improve the SVR 1, indeed the errors are nearly the same. 
This shows that in the SVR 2 the factors do not play a significant role. Moreover, the SVR 2 
was not affected by the SA, the RMSE remained also almost unchanged. 

 
RMSE(SVR 3)= 0.38370 
RMSE(SVR 3 SA)= 0.3229 
 
The SVR3 as compared to SVR2 
SA reduces the error in general, 
and most significantly on 
Wednesday 5-13h and 18-0h, 
which, in average, comepensate 
the Friday increase in the error. 
The use of SA with SVR 2 was 
highly beneficial, thus among the 

the SVRs the SVR 3 SA is the most suitable. 
 
RMSE(ANN 3)= 0.869166 
RMSE(ANN 3 SA)= 0.32082 
 
The ANN 3 gives extremely bad 
results, but these are corrected  
significantly by the SA. It is 
instructive to observe the 
similarity between the errors of 
the ANN 3 SA and the SVR 3. 
 

 
 
The four methods with the best 
RMSE are presented int this 
figure. In certain cases, nall four 
give approximately the same 
errors (Monday, 18h, Thursday 
9h). In is not surprising that the 
two methods based purely on 
NO (1) and on HTW (3) give 
different results (Wednesday 12-
18h, Friday 17h).  
 

We could not find a method that gives good results in the whole prediction period, but we saw 
that the combination of the different methods could be very advantageous. 
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