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ABSTRACT

The purpose of this paper is to demonstrate that Positive Matrix Factorization (PMF)
can model factors and calculate source attributions from ambient data sets, where limited
chemical source profiles are available. It also demonstrates a procedure for the derivation of
modeled profiles which can be applied in subsequent Chemical Mass Balance (CMB)
receptor modeling.

Various receptor models including Positive Matrix Factorization (PMF) and Chemical
Mass Balance (CMB) were applied in order to calculate the source attributions. Chemically
analyzed ambient data sets from Cairo were collected at several sites, representing short time
intervals during 1999-2002. PMF source factors modeled from the Cairo data sets contain
clear signatures of motor vehicle emissions, vegetative burning, marine salt, ferro-manganese
plant emissions, oil fired power plant, cement plant, secondary ammonium chloride,
geological dust, lead smelter, and a copper zinc smelter. Variable amounts of secondary
ammonium sulfate and ammonium nitrate are contained in most of the modeled factors.
Application of the PMF model was able to calculate source attributions as well as overcome
the issues inherent to the application of the CMB receptor model. Source profiles were
derived from PMF factors, which could serve as input to the CMB modeling.

INTRODUCTION

Cairo, Egypt suffers from high ambient concentrations of atmospheric pollutants. In
order to reduce ambient pollution, the U.S. Agency for International Development (USAID)
and the Egyptian Environmental Affairs Agency (EEAA) have supported the Cairo Air
Improvement Project (CAIP) [1]

One of the CAIP initiatives was a source attribution study (SAS) to determine
contributions from various sources to the observed pollutant levels. As part of the SAS,
intensive monitoring studies were carried out during the periods of February/March and
October/November 1999 and June 2002. PMjg, PM,s, polycyclic aromatic hydrocarbons
(PAHS), and volatile organic compounds (VOCs) were measured on a 24-hour basis at sites
representing background levels, mobile source impacts, industrial impacts, and residential
exposure. Source attribution results using measured source profiles, ambient samples, and
the Chemical Mass Balance (CMB) receptor model are presented in another paper by Gertler
et al. [2] at this meeting.

This paper presents results of Positive Matrix Factorization (PMF) receptor modeling
using the same ambient data set as above. PMF is a variant of Factor Analysis with non-
negative factor coefficients. It calculates factors from an ambient air data set, which can be
shown to be substituted for measured chemical source profiles. PMF modeling differs from
Chemical Mass Balance (CMB) receptor modeling in that no measured source profiles are
required, only a reasonably large (>100 samples) ambient data set. One of the assumptions of
the CMB model [3] is that the chemical compositions of the sources remain consistently the
same between when measured at the source until sampled in the ambient atmosphere at the



receptor site. This is seldom the case, and in many instances it is difficult to apply the CMB
model when dealing with reactive source components such as motor vehicle emissions or
vegetative burning. Over time, and depending on prevailing meteorological conditions, as
well as the presence and concentrations of reactive chemical components (reactive
hydrocarbons, NOx, SO,, O3) in the ambient atmosphere, profiles modeled at the receptor site
may no longer be representative of the original measured chemical profiles at the source. In
many instances appropriate chemical profiles are unavailable, especially from non-point
sources such as garbage and vegetative burning, geological and road dust, or motor vehicle
emissions. Chemical source profiles for the impacting sources are often also difficult and
expensive to acquire, or not available. For the above reasons, receptor models such as the
PMF [4], and UNMIX [5, 6] were developed, also as improvements to other multivariate
procedures such as Factor Analysis (FA) and Principal Components Analysis (PCA) [7].

This paper focused on identifying major source types and calculating average PMF
modeled source attributions for the 1999- 2002 period. The paper also demonstrates the
ability of PMF to develop chemical source profiles for CMB receptor modeling, for Cairo.

CAIRO AMBIENT DATA SET

A data set of 360 samples was assembled from five subsets as described elsewhere [8,
2]. Two of the sample subsets were described as being source samples. These were collected
in the proximity of major sources, such as at road tunnels and burning garbage dumps, near
steel plants and cement factories, and not directly at the point of emissions. In such instances
the source samples are diluted with ambient air already polluted by other sources, and are for
this modeling exercise considered to be a source enriched ambient samples. In the course of
subsequent PCA and PMF this would lead to a bias of the modeled results towards elevated
species concentrations from such source enriched ambient samples. The PMF modeling was
performed on the complete data set (360 samples) as well as on the PM, s (195 samples) and
PM3, (165 samples) sample subsets.

For this analysis the inorganic elements and ions, as well as the eight carbon species
on front as well as backing filters were considered (50 species in total). With the exploratory
rounds of analysis, all species were subjected to PCA using SAS® data analysis software. No
missing or zero values in this data set were replaced, and subsequently the PCA was
performed only on those samples without missing values. Several iterations of PCA were
conducted, in order to identify and eliminate species that do not contribute substantially (<
0.1 as factor coefficient) to the total variance of the sample set. From the PCA as well as
previous CMB [1] and preliminary PMF, the following 34 species were identified for the
final PMF receptor modeling: CI', NO3', SO4~, NH;", Na™ K*, OCy.4, OPT, ECy.3, Mg, Al, Si,
K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Br, Sb, Ba, Pb, and Mass. In this case and prior
to the PMF modeling each of the zeros and negative values in the data set were replaced by
the smallest measured positive value for that species, and the corresponding uncertainties by
half this value.

RESULTS

The selection of the number of factors (Factor 1-9) (Figure 1) for the PMF modeling
was based on the PCA results and experience from similar studies [9]. The PCA also showed
that at least six factors are required to account for more than 95 percent of the total variance
in the data set.
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Figure 1. PMF modeled source profiles for the total data set (a), as well as for the PM, and the
PM; (c) data subsets, for Cairo.




So as to better resolve amongst the sources of fine (e.g. combustion, smelter) and
coarse (e.g. geological, road, cement plant) dust, three individual subsets of results were
modeled, one being complete data set of 360 samples (Figure 1a), and the other two the PM,5
(Figure 1b) and PMyq (Figure 1c) sample subsets. The PMF modeled factors for each data set
or subset are presented by bar charts showing the relative mass proportions of the modeled
species. Since the data set includes samples at or close to sources, and in other instances for
certain periods of the year, this source attribution may not be representative of the annual
average Cairo ambient atmosphere. Also grouped in these figures are the major sources
represented by each of the nine factors. It should be noted that each factor seldom represents
a single source, but often a combination of a major and one or more minor and trace source

types.

Source Profiles from PMF Modeled Factors

The modeled PMF factors often also contain secondary ammonium and sea salt.
Minor profiles such as marine salt, secondary ammonium nitrate, ammonium chloride and
ammonium sulfate were subsequently subtracted from the modeled PMF factors. Of the 27
modeled factors (nine for each of the three sample sets), nine identified as containing major
sources, were selected. The criteria applied in this selection step included the abundance
(attribution) of the factor, the contribution of a major source to that factor, together with the
amount of secondary ammonium and other ions to be subtracted to provide a “clean” source
profile. Table 1 lists the nine selected factors from which the nine chemical source profiles
were extracted.

Table 1. PMF modeled factors selected for the extraction of source profiles.

Profile Extracted PMF Modeled Factor Number PMF Modeled Data Set
Geological dust CF1 PM 55+ PMyg

Heavy oil combustion (Mazut) CF4 PM 55+ PMy,

Cement plant CF8 PM 55+ PMy,

Motor vehicle emissions CF9 PM 55+ PMyg
Copper-zinc smelter C25F1 PM ;5

Diesel vehicle emissions C25F8 PM ;5

Vegetative burning C25F9 PM 5

Lead-zinc smelter Ci10F1 PMy,

Ferro-manganese industry C10F2 PMyq

The “cleaned” PMF modeled source compositions were normalized to the sums of the
analyzed species. Mass totals were calculated from ion balances and converting elements to
oxides, as well as recalculating the organic carbon species to hydrocarbons. (reconstituted
mass) applying multiplication factors (Table 2) which were previously calculated for each
measured source type in Cairo. These differ from the empirical value of 1.4 applied in the
case of the IMPROVE data sets [9]. The assumption is that the sum of the species was 100
percent and that the difference in mass between the analyzed and non analyzed species is
ascribed to hydrogen and oxygen bound to organic compounds.

Hydrocarbon mass = Multiplier*(OC1 + OC2 + OC3 + OC4 + OPT)

By comparison of major species ratios and trace element markers with measured
profiles in Cairo by Lowenthal et al. [1] and elsewhere by Engelbrecht et al. [10], Watson et
al. [11], and Maykut et al. [12], the following cleaned modeled source profiles were
identified (Figure 2, Table 3).



Table 2. Multiplier for OC calculated from “source” samples for each source types.

Source Type *Multiplier
Geological dust 3.33
Heavy oil combustion (Mazut) 1.43
Cement plant 1.41
Motor vehicle emissions 1.16
Copper-zinc smelter 2.08 est.
Diesel vehicle emissions 1.13
Vegetative burning 1.88
Lead-zinc smelter 2.08
Ferro-manganese industry 2.12

1. Heavy Oil Combustion (Mazut)

The profile contains as major species, increasing amounts of OC2, OC3, OC4, and
EC1, as well as Mg. From the carbon fractions ratios and the range of trace elements (V, Ni,
Ba, Sb, Br, Cr and Co), this profile was identified as being from heavy industrial oil
combustion, i.e. Mazut, often used at oil fired power plants
2. Motor vehicle Emissions

The profile contains major, nearly equal amounts of OC1, OC2, OC3, and slightly
less OC4 and EC1. Leaded gasoline has not been identified as such, because of all the Pb
being classed with the lead-zinc smelter profile. Leaded gasoline was also phased out in
Cairo in 1997 and it was not expected to show up in this profile.
3. Diesel Vehicle Emissions

This profile is characterized by large amounts of OC2, OC3, OC4 and EC1, with
some EC2. It also contains some trace amounts of V, Cu, Zn, Br, Sb, and Ba. The Si, Al, K,
Caand Ti in this profile may be from road dust.
4. Vegetative Burning

This profile is composed of large amounts of all four OC fractions (OC1, OC2, OC3,
OC4), together with a high concentration (3.77%) of soluble K*, typical of vegetative
burning. It also contains some EC1.
5. Geological Dust

The soil profile is simple to identify, being composed of the regular geological species
such as Al, Si, Ca, and Fe, as well as some insoluble K and soluble K*. The carbon fractions
are considered to be part of the soil profile.
6. Cement Plant

The Ca, together with amounts of Si, Al, and Fe, and OC2, OC3 and OC4 points to
this being a cement plant profile.
7. Copper-zinc Smelter

This is a predominantly a zinc profile, with some copper. Because of the volatility of
zinc, this metal is often emitted in great abundance by metallurgical processes, including
sulfide reduction and arc furnaces. There is also a high concentration of EC1 associated with
this profile, which is ascribed to the metallurgical sulfide reduction process.
8. Lead-zinc Smelter

This predominantly Pb profile contains some Zn, and also EC1 which is interpreted as
being from the lead smelting process. This profile has minor geological species, which can
be ascribed to geological dust.
9. Ferro-manganese Industry

This is a very definite ferro-manganese profile representative of the iron and steel
industry in Cairo. The crustal species such as Al, Si, K and K, as well as the carbon species
are considered to be part of this profile.



Table 3a. Cairo PMF Modeled Source Profiles (excluding anions and cations other than K+)

PM Qil fired power plant PM Motor vehicle emissions PM, s Diesel vehicle emissions PM, 5 Vegetative Burning

Species | % Species + % Unc. % Species + % Unc. % Species  + % Unc. % Species * % Unc.
Cl- 0.000 | £ 0.004 0.000 £ 0.000 0.000 + 0.160 0.000 + 5.080
NO3- 0.000 | £ 0.062 0.000 £ 0.000 0.000 + 0.208 0.000 £ 0.330
SO4= 0.000 | £ 0.258 0.000 + 0.024 0.000 + 6.739 0.000 =+ 0.904
NH4+ 0.000 | £ 0.065 0.000 + 0.016 0.000 + 4.123 0.000 + 0.254
Na+ 0.000 | £ 0.024 0.000 + 0.002 0.000 + 0.077 0.000 £ 0.033
K+ 0.008 | £+ 0.022 0.000 + 0.004 0.000 + 0.069 3.770 + 1.437
0OC1 0.000 | £ 0.009 20.058 + 0.249 0171 + 3.132 13.780 + 11.961
0cC2 8.974 | £ 0.243 20.874 + 0.277 22648 + 12213 10.816 + 11.247
0C3 16.372 | £ 0.420 26.103 + 0.452 29.002 + 23.620 16.384 + 17.595
0cC4 16.467 | £ 0.319 11381 + 0.182 10.222 + 13.438 8.271 + 10.346
OPT 0.019 | £ 0.002 0.000 + 0.000 0.002 + 0.028 0.000 £ 0.015
EC1 29.165 | £ 0.383 8.737 + 0.175 16923 + 12.866 2187 + 5741
EC2 0.243 | £ 0.030 0.086 + 0.011 1.260 =+ 2.400 0.073 £ 0.319
EC3 0.008 | £ 0.000 0.000 + 0.000 0.001 + 0.006 0.000 + 0.001
Mg 3494 | £+ 0.021 0.000 £ 0.000 0.000 + 0.020 0.000 £ 0.003
Al 0.022 | £ 0.017 0.044 + 0.004 1.086 = 0.802 0.051 £ 0.166
Si 1351 | + 0.033 0.056 + 0.002 2787 + 1149 0.050 £ 0.092
K 0.103 | £ 0.025 0.000 + 0.002 0.030 + 0.481 0.974 £ 1520
Ca 0.204 | £ 0.020 0.000 + 0.001 1328 + 0.638 0.000 £ 0.069
Ti 0.000 | £+ 0.001 0.000 + 0.000 0.003 + 0.016 0.000 £ 0.001
\Y 0.177 | £+ 0.003 0.000 + 0.000 0.002 + 0.009 0.000 £ 0.001
Cr 0.001 | £ 0.000 0.000 + 0.000 0.000 + 0.001 0.000 £ 0.000
Mn 0.014 | £ 0.001 0.000 £ 0.000 0.000 + 0.005 0.000 + 0.002
Fe 0.613 | £ 0.013 0.008 £ 0.000 1186 =+ 0.473 0.002 <+ 0.012
Co 0.000 | £ 0.000 0.000 £ 0.000 0.000 + 0.001 0.000 £ 0.000
Ni 0.070 | £ 0.000 0.000 £ 0.000 0.000 + 0.001 0.000 £ 0.000
Cu 0.095 | £+ 0.001 0.000 + 0.000 0.070 + 0.047 0.000 £ 0.000
Zn 0.097 | £ 0.004 0.001 + 0.000 0.012 + 0.112 0.001 + 0.006
Se 0.000 | £ 0.000 0.000 + 0.000 0.000 + 0.001 0.000 + 0.000
Br 0.001 | £ 0.000 0.000 + 0.000 0.000 + 0.002 0.000 £ 0.002
Sh 0.001 | £ 0.000 0.000 £ 0.000 0.000 + 0.003 0.000 + 0.000
Ba 0.007 | £ 0.000 0.000 £ 0.000 0.001 + 0.009 0.000 £ 0.001
Pb 0.100 | £ 0.004 0.000 + 0.000 0.000 + 0.013 0.000 + 0.001
Total 77.607 87.348 86.736 56.357




Table 3b. Cairo PMF modeled source profiles (excluding anions and cations other than K+).

Species
Cl-
NO3-
SO4=
NH4+
Na+
K+
OC1
ocC2
0C3
ocC4
OPT
EC1
EC2
EC3
Mg
Al

Si

K

Ca

Ti

\Y

Cr
Mn
Fe
Co
Ni
Cu
Zn
Se

Br
Sb
Ba
Pb
Total

PM Geological dust PM Cement plant PM2.5 Copper-zinc smelter PM10 Lead-zinc smelter PM10 Ferro-manganese
industry
% Species % Unc. % Species % Unc. % Species % Unc. % Species % Unc. % Species % Unc.
0.000 0.024 0.000 0.130 0.000 0.095 0.000 0.544 0.000 0.053
0.000 0.079 0.000 0.110 0.000 0.143 0.000 0.017 0.000 0.014
0.000 0.175 0.000 0.216 0.000 11.380 0.000 0.303 0.000 0.159
0.000 0.002 0.000 0.001 0.000 0.917 0.000 0.163 0.000 0.009
0.000 0.021 0.000 0.059 0.000 1.267 0.000 0.055 0.000 0.030
0.737 0.017 0.119 0.019 0.001 0.774 0.183 0.034 1.052 0.027
0.000 0.009 0.000 0.008 1.236 11.267 4.730 0.276 0.690 0.066
1.470 0.164 2.652 0.159 0.004 1.250 4.646 0.337 0.886 0.088
3.906 0.351 9.644 0.354 0.026 7.584 1.969 0.534 0.607 0.156
1.201 0.259 10.497 0.303 0.050 10.128 0.002 0.109 0.495 0.089
0.000 0.001 0.001 0.001 0.000 0.037 0.033 0.024 0.028 0.012
0.494 0.193 0.001 0.033 19.395 11.145 15.477 1.079 0.000 0.017
0.801 0.031 0.734 0.034 0.000 0.051 0.144 0.037 0.663 0.044
0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000
0.000 0.000 0.087 0.003 0.220 0.332 0.001 0.040 0.000 0.000
4.727 0.089 2.314 0.057 0.002 0.486 0.316 0.412 0.641 0.077
21.404 0.263 7.825 0.105 0.000 0.101 5.462 1.640 3.230 0.383
1.500 0.055 0.000 0.023 0.000 0.170 0.000 0.150 0.449 0.123
8.792 0.153 29.697 0.162 0.203 0.523 0.897 0.694 1.536 0.118
0.638 0.005 0.000 0.000 0.000 0.004 0.002 0.001 0.000 0.000
0.000 0.000 0.001 0.000 0.000 0.003 0.065 0.004 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.001 0.021 0.002 0.000 0.000
0.009 0.001 0.000 0.001 0.042 0.066 0.396 0.009 2.364 0.026
4.397 0.040 2.864 0.032 0.676 0.625 1.903 0.127 54.424 0.608
0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.001
0.000 0.000 0.000 0.000 0.000 0.001 0.047 0.001 0.000 0.000
0.021 0.001 0.006 0.001 0.992 0.078 0.047 0.002 0.000 0.000
0.000 0.003 0.088 0.003 72.899 2.300 3.035 0.076 0.001 0.012
0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000
0.000 0.000 0.001 0.000 0.000 0.007 0.001 0.001 0.000 0.000
0.000 0.002 0.000 0.000 2.289 0.466 40.342 0.280 0.127 0.003
50.099 66.534 98.034 79.722 67.195
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Figure 2. Cleaned PMF modeled chemical source profiles for application as input to the CMB receptor model.
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CONCLUSIONS

The data matrix of 360 samples and 50 species, together with their uncertainties were
assembled for this study. The elements and ions, together with the carbon fractions were
explored by PCA and modeled by PMF. The chemically analyzed ambient data set from
Cairo was collected at several sites, representing spring and fall samples collected during
1999-2002. The data set was found to be adequate to perform PMF receptor modeling and to
model the nine source profiles. The total data set of 360 samples as well as the individual
PM, 5 (195 samples) and PM;, (165 samples) sample subsets were analyzed, using 34 species
in each run. The modeling showed that each PMF factor represented one major source type,
together with one or more minor and trace sources. The PM;s modeled results better
resolved the combustion process profiles such as the heavy oil combustion, motor vehicle
emissions and vegetative burning while the PMj; modeled results emphasized coarse
processes such as geological dust and ferro-manganese plant emissions. Major source factors
and average attributions modeled from the three data sets in this PMF study include, motor
vehicle emissions (13-28%), vegetative burning (8-18%), marine salt (17%), ferro-manganese
plant emissions (8-17%), oil fired power plant (14-16%), cement plant (4-11%), secondary
ammonium chloride (7-10%), geological dust (7-16%), lead smelter (4-7%), and copper zinc
smelter (3-13%). Variable amounts of secondary ammonium sulfate and ammonium nitrate
were found to be contained in most of the modeled factors

The factors (1-9) were re-calculated, so as to extract the major source profiles and to
remove the contributions from the minor and trace profiles, specifically secondary ions and
marine salt. Nine “cleaned” PMF factors, representing matured regional chemical source
profiles were extracted. These include geological dust, cement plant dust, heavy oil
combustion emissions, composite motor vehicle emissions, diesel vehicle emissions,
vegetative burning, ferro-manganese industry, lead-zinc smelter, and copper-zinc smelter
emissions. These modeled profiles can be applied in Chemical Mass Balance (CMB)
receptor modeling and future source apportionment studies.
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