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ABSTRACT 
 
The Air Quality Strategy and part IV of The Environment Act, within the United Kingdom, 
highlights the need for local authorities to undertake air quality assessments. However, many 
of the dispersion modelled studies undertaken for this purpose do not accurately predict short 
term average concentrations (i.e. one day or less) and have limited validation data for short-
term averages. The inability of dispersion models to predict short term averages is generic of 
the typically used Gaussian dispersion model. The work presented in this paper has 
concentrated on investigating, developing, designing and testing an innovative method of 
linking dispersion modelled and monitored results using artificial neural networks. The 
objectives of the study were to establish the relationships between short term (1 hour) air 
pollution monitored data, air pollution data produced through dispersion modelling and 
meteorological data and to use the findings to create and validate a new intelligent ‘control’ 
model to correct errors in dispersion modelling results, such as those that occur during low 
wind speeds, when many Gaussian models are known to under predict. The study shows that 
artificial neural networks can be used to simulate the complex relationships between 
dispersion modelled and monitored data. The adopted method is amenable for use with many 
dispersion models and geographical areas. It is most suited to occasions when in-depth air 
pollution analysis is necessary, for short term averages, as now statutorily required in the UK 
and many other countries.  
 
BACKGROUND 
 
The European Union’s (EU) Daughter Directives set limits for a variety of air pollutants, 
including some short term limits for 1 hour averages. Similarly, the World Health 
Organisation (WHO) has set limit values with averaging periods as low as 15 minutes. The 
United Kingdom (UK) as part of their obligation to achieve the EU air pollution limits have 
set similar objectives for air pollution, however, the UK has also incorporated some of the 
tighter WHO guidelines, including 15 minute averages. As part of the UK government’s aim 
of achieving the UK objectives local authorities have had to undertake, under The Air Quality 
Strategy [1] and part IV of The Environment Act [2], air quality review and assessments. 
About 124 out of around 450 [3] local authorities in the UK have recently completed a review 
and assessment of local air quality which has culminated in the declaration of Air Quality 
Management Areas (AQMAs) in many areas, where air pollution objectives are likely to be 
exceeded. Some of these objective exceedance are related to short term objectives. Before an 
AQMA is declared the area of exceedance needs to be identified. With current modelling 
limitations for short term objectives this task, especially for short term objectives, is difficult 
and prone to errors. 
 
In some cases sophisticated monitoring can be carried out to accurately measure short term air 
pollution concentrations, however, due to the expense of collecting short-term monitored data 
modelling of air pollution, typically involving gaussian dispersion models, has had to be 
undertaken to fill in the ‘gaps’. Any modelling will always have a degree of error associated 
with it as it is a limited simulation of the real world and it is impossible to include all relevant 



variables that can affect the end results; it is an approximation that uses the most significant 
variables to provide an estimate. Typical ways of estimating air pollution involve the use of 
dispersion models, monitored data and emission inventories, as well as standard statistical 
techniques.  However, the use of dispersion models for predicting air pollution is prone to 
uncertainties: emission inventory data is normally based on estimates for a source of pollution 
and rarely based on monitored data; dispersion models are based on a Gaussian probability 
function of pollution dispersion from a source to a ‘receptor’, using emission inventory data 
and meteorological data as an input; dispersion models estimate pollution at a point by 
summing the contribution from each source; there is no calculation made for accumulation 
over time e.g. from the last calculated period); and dispersion model inputs are not exact. The 
performance of the current methods could be substantially improved, if the conditions under 
which these methods did not reasonably estimate were known, and steps were taken to 
‘control’ this under performance. However, to achieve this ‘control’ would require 
substantial, time-consuming, analysis of large amounts of data. 
 
The basic relationships between monitored and modelled air pollution is inter-variable 
dependant and non-linear. Neural networks are useful in areas where there are many variables, 
which are inter-dependent and have non-linear relationships, they are a quick and efficient 
means of creating prediction models, and time can be spent analysing results rather than 
creating or designing the initial models. Therefore, it was considered appropriate to utilise 
neural networks for the prediction of air pollution. Previous studies [4] found that the 
variables most applicable to the relationship between dispersion modelled data and monitored 
data were wind speed, temperature, the past hour’s monitored pollution level and the current 
hour’s modelled pollution level. These variables have been used with the neural networks to 
increase the accuracy of the results from dispersion modelling. 
 
Artificial neural networks are based on biological neural behaviour [5] and are typically used 
in pattern recognition and can be used for equation estimation [5, 6], where other techniques 
may prove unreliable or too time consuming. Neurons are used as connection points between 
the input and outputs. The greater the number of neurons the greater the accuracy and power 
of the network [5]. Each neuron is based on an equation which tends to be linear, logarithmic 
(natural) or tangential, though in reality anything could be used providing there is a solution. 
These equations have weights and bias (i.e. a multiple and an addition element) that can be 
changed depending on the training or learning of each neuron (memory). A general approach 
to neural networks, and brief review of their use in atmospheric/pollution modelling, is 
presented by Peace [4] and additionally by Gardner and Dorling [7], both these publications 
discuss how to implement a neural network and a have detailed discussion on the 
multiperceptron, which is typically used for air pollution.  
 
Neural networks have previously been used in relation to air pollution modelling by typically 
replacing the dispersion model, while utilising monitored data for a specific pollutant only [7, 
8, 9, 10, 11]. However, this requires the provision of many sites where the required monitored 
data is available, which is not the case for most local authorities. Many urban local 
authorities, within the UK, possess one site with short-term monitoring equipment, which 
could be used with the suggested methodology.  In this study neural networks have been used 
in a unique way to estimate the relationships between monitored air pollution, modelled air 
pollution and monitored meteorological data, to produce more accurate results. 
 
 
METHODOLOGY 
 



The ISC3 dispersion model [12] has been used to produce the dispersion modelled output in 
conjunction with the local emissions inventory [13] and local meteorological data. Data was 
also collected from the local continuous air quality monitoring station data (AURN), a high 
accuracy chemiluminescent automatic monitoring station belonging to NETCEN’s calibration 
club. These monitoring stations are vigorously validated and calibrated on a regular basis [14] 
and provide typically hourly averaged concentrations.  
 
The dispersion modelled data and other monitored data, both air pollution and meteorological, 
were used in the training and simulation of the neural networks. Training and simulation were 
only carried out for one receptor point due to limited short term monitored data. However, 
from the concept point of view and the fact that many urban local authorities do not have 
numerous monitoring stations, the use of one monitoring station for background training data 
was deemed adequate. A feed-forward neural network, using three layers, is typically used for 
air pollution, as other work has shown this to be the optimum compromise between the time 
to train and the ability of the neural network to simulate data [7, 10, 15, 16,  17]. Hence, in 
this study the neural networks’ structure were based on feed-forward networks with three 
layers (excluding the input layer). Trial runs found that the optimum neural network consisted 
of a tangential, logarithmic and linear layers (activation functions in each layer), with 12, 6 
and 1 neurons respectively. Different combinations of activation functions and different 
numbers of neurons, for each layer, were tested. The last layer has one neuron as there is only 
one output from the neural network (pollutant concentration). Training was carried out by 
creating various sets of input and output data, with different variables and varying amounts of 
data (i.e. number of hours), summaries are presented in Table 1 for the two artificial neural 
networks (ANN) reported here. Data ranges were normalised so that the values of each 
variable would be within similar ranges, this allows the neural network to calculate the 
weights and biases without favouring one particular variable. The largest data set (in terms of 
number of hours) was found to train the neural networks the best, presumably because there 
was a significant number of different data ‘scenarios’ represented within this data. As the 
results for the training site are not necessarily representative of the whole area, the trained 
neural networks were then validated at other sites where they had not been trained. 

TABLE 1: INPUT DATA INCLUDED 
INPUT ANNa ANNb 
HOUR(k) Yes Yes 
WIND SPEED(k-1) (*10) Yes Yes 
TEMPERATURE(k-1) (-273) Yes Yes 
DISPERSION MODEL(k) Yes Yes 
INCREASE IN WIND SPEED (+15) Yes No 
4am CONCENTRATION Yes Yes 
 
As carbon monoxide is cheaper to measure, due to its relative concentration (ppm rather than 
ppb) and associated complexity of the equipment, the validation was carried out on carbon 
monoxide. 
 
Three additional sites, to the AURN station site (Site 4), were chosen at background locations. 
Each site was monitored for at least 5 working days (i.e. not a weekend or holiday) and the 
collected data used to validate the chosen neural networks. As part of aim of this study was to 
predict short term concentrations to a higher level of accuracy, rather than long term average 
values, a small sample (i.e. 5 working days) was chosen to indicate if the neural networks 
produce better short term averages, at sites other than the training site. The AURN site (Site 
4) and Site 3 are both classed as background sites, however, both are heavily influenced by 
local traffic due to their locations. Sites 1 and 2 are also background sites but are further away 



from the main arterial routes within the study area. All sites are also influenced by localised 
industrial activity. Site 2 is close to the edge of the study area. The data sets for the neural 
networks were created as described previously, except that the neural networks were not 
trained further and additional receptor points were added to the dispersion model in order to 
generate the relevant input data to the neural networks.  

 
RESULTS 
 
Results are presented in Table 2. The iteration value refers to the number of iterations 
(training cycles) that were used to initially train the neural network.  
 
Table 7.2 depicts the correlation between the monitored data and the neural network and 
dispersion modelled results. In general the neural networks have higher correlation than the 
dispersion modelled results. However, the neural networks at Site 2, with the exception of 
ANNa at 25 iterations, have a lower correlation than the dispersion modelled data. This lower 
correlation could possibly be due to Site 2 being close to the local authority border, where 
outside emission sources (that where not modelled) may have impacted. The better 
performing neural networks, in terms of correlation, generally have a higher correlation for a 
lower number of iterations, indicating that the neural networks are becoming too well trained 
at higher iterations and loosing their ability to generalise. 
 
The percentage error decrease has been calculated using the following equation: 
 
Error decrease = ((Model prediction – Monitored) - (ANN prediction – Monitored)) x 100 
                                                                            Monitored 
 
Where: 
 Error decrease = Percentage error decrease; 
 Model prediction = Dispersion modelled result (mean); 
 Monitored = Monitored data (mean); and 
 ANN prediction = Artificial neural network prediction (mean). 
 
The percentage error decrease is in general higher, for the same number of iterations, for 
ANNa than for ANNb. However, for ANNb the percentage error decrease is higher for a 
lower number of iterations and for ANNa higher for a higher number of iterations. The 
percentage error decrease is highest at all sites, except Site 4, for ANNb. Therefore, it appears 
that ANNb is over generalising at higher iterations, but in general is better at predicting.  
 
TABLE 7.2: RESULTS 
Site Iteration Correlation 

for ANNa 
Correlation 
for ANNb 

Correlation 
for dispersion 

model 

Percentage 
error decrease 

for ANNa 

Percentage 
error decrease 

for ANNb 
1 25 0.56 0.3 0.33 13 26 
1 50 0.52 0.39 0.33 18 22 
1 75 0.54 0.46 0.33 19 17 
1 100 0.54 0.46 0.33 19 17 
1 125 0.54 0.47 0.33 19 17 
1 150 0.54 0.48 0.33 19 16 
1 175 0.54 0.49 0.33 19 15 
1 200 0.54 0.49 0.33 19 15 



2 25 0.09 0.01 0.08 19 36 
2 50 0.02 -0.06 0.08 28 28 
2 75 -0.05 -0.07 0.08 34 21 
2 100 -0.05 -0.07 0.08 35 2 
2 125 -0.05 -0.07 0.08 35 19 
2 150 -0.05 -0.07 0.08 34 18 
2 175 -0.06 -0.08 0.08 35 16 
2 200 -0.06 -0.08 0.08 35 16 
3 25 0.1 0.12 0.06 28 54 
3 50 0.04 0.11 0.06 48 45 
3 75 0.01 0.09 0.06 63 35 
3 100 0.01 0.08 0.06 64 35 
3 125 0.01 0.08 0.06 64 33 
3 150 0.01 0.08 0.06 64 3 
3 175 0.01 0.08 0.06 65 28 
3 200 0.01 0.08 0.06 66 27 
4 25 0.42 0.59 0.01 28 56 
4 50 0.4 0.52 0.01 44 42 
4 75 0.33 0.43 0.01 51 33 
4 100 0.33 0.43 0.01 52 33 
4 125 0.33 0.41 0.01 52 31 
4 150 0.33 0.4 0.01 51 28 
4 175 0.33 0.38 0.01 52 26 
4 200 0.32 0.37 0.01 52 25 
 
CONCLUSION 
 
To summarise, the neural networks appear to have higher correlations and the lowest 
percentage error. These two neural networks deliver an improvement in correlation and a 
decrease in percentage error, in relation to the error associated with dispersion model results, 
as demonstrated in Table 2. In Table 2 neural network b (ANNb) has an average error 
decrease of 27.9% and neural network a (ANNa) an average error decrease of 38.9% 
compared to the dispersion modelled results. However, ANNb is better at predicting if the 
neural networks are only trained for a few iterations. 
 
This study demonstrates that the application of the neural networks trained on as much data as 
possible, out perform the dispersion model in terms of their ability to reflect hourly 
fluctuations and reduced error, even at sites that the neural networks have not been trained at. 
However, the neural networks have been trained and tested only at background locations. 
Further research on the utilisation of a more advanced dispersion model would possibly 
increase the accuracy of the neural network results and consideration of other non-background 
sites. 
 
The results are promising and the methodology of combining dispersion modelled and 
monitored data, could be utilised in the future within local authorities to enhance dispersion 
model results, or even extended to link directly with emission inventories, removing the 
dispersion modelling process altogether. The discussed methodology could also be utilised 
within current dispersion models to increase the accuracy. 
 
The methodology could also be used in conjunction with less sophisticated dispersion models, 
such as PAL (US EPA Point Line and Areas source dispersion model), to increase their 



accuracy to that approaching a more advanced and expensive dispersion model and thus 
decrease the cost. Once the neural network has been set-up it is fairly easy to re-train and 
could be trained on local data on a regular basis to provide a more up to date picture of 
pollution and the resulting increased accuracy. The resulting artificial neural networks could 
also be used within Air Quality Management Areas, linking to real-time data (the 4am value) 
to provide a forecast for the days pollution and hence feed into ‘Action Plans’ to avoid 
pollution scenarios. 
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